
Correlation Analysis in R, Part 2: Performing and Reporting
Correlation Analysis

Petr Baranovskiy @ www.dataenthusiast.ca

2021-01-31 02:00:00 CST

This is the second part of the Correlation Analysis in R series. In this post, I will provide an overview of
some of the packages and functions used to perform correlation analysis in R, and will then address reporting
and visualizing correlations as text, tables, and correlation matrices in online and print publications.

Performing Correlation Analysis: Basic Tools

Comparing stats::cor.test, rstatix::cor_test, and correlation::cor_test

There are multiple packages that allow to perform basic correlation analysis and provide a sufficiently detailed
output. By sufficiently detailed I mean more detailed than that of stats::cor(). Of those, I prefer rstatix
and correlation (the latter is part of the easystats ecosystem). Both have the function cor_test(), and
both are better than stats::cor_test() because they work in a pipe and return output as a dataframe.

Let’s illustrate the use of cor_test() from both packages with the data collected by Gorman, Williams, and
Fraser (2014), which is available as the palmerpenguins package. First, let’s install and load the packages,
then get data for one penguin species:

install packages
install.packages("rstatix")
install.packages("correlation")
install.packages("palmerpenguins")

load packages
library(dplyr)
library(rstatix)
library(correlation)
library(palmerpenguins)

select Adelie penguins
adelie <- penguins %>%

filter(species == "Adelie") %>%
select(c(2, 3, 6)) %>% # keep only relevant data
drop_na()

Advantages of rstatix::cor_test():

• works in a pipe, unlike stats::cor.test(),
• output is a tibble dataframe, unlike stats::cor.test(), which returns a list, and unlike

correlation::cor_test(), which returns a dataframe but not a tibble,

1

https://dataenthusiast.ca/category/correlation-analysis/
https://github.com/kassambara/rstatix
https://github.com/easystats/correlation
https://github.com/easystats/easystats#easystats
https://github.com/allisonhorst/palmerpenguins

• supports quaziquotation, unlike correlation::cor_test() – you don’t have to remember to put
variable names in quotes.

Disadvantages of rstatix::cor_test():

• only allows to calculate confidence intervals (CIs) for Pearson’s 𝑟, unlike correlation::cor_test(),
which can calculate CIs for Spearman’s rho 𝜌 and Kendall’s tau 𝜏 ,

• knows only three methods for correlation analysis – Pearson’s, Spearman’s, and Kendall’s – vs. 15 (!)
methods available in correlation::cor_test() including the "auto" method, where R tries to guess
the best method for you, and

• doesn’t report sample size and/or degrees of freedom, unlike correlation::cor_test().

Let’s illustrate:

rstatix::cor_test()
rstatix::cor_test(adelie, bill_length_mm, body_mass_g, method = "spearman")

A tibble: 1 x 6
var1 var2 cor statistic p method
<chr> <chr> <dbl> <dbl> <dbl> <chr>
1 bill_length_mm body_mass_g 0.55 258553. 2.77e-13 Spearman

correlation::cor_test()
correlation::cor_test(adelie, x = "bill_length_mm", y = "body_mass_g", method = "spearman")

Parameter1 | Parameter2 | rho | 95% CI | S | p | Method | n_Obs

bill_length_mm | body_mass_g | 0.55 | [0.42, 0.65] | 2.59e+05 | < .001 | Spearman | 151

Most R packages, including stats, rstatix, and correlation, use Pearson’s correlation coefficient 𝑟 as the
default method for correlation analysis, so you’ll need to expressly assign a method argument if you need to
compute a different coefficient.

Both rstatix::cor_test() and correlation::cor_test() support directional hypothesis testing,
even though in the latter case the directional option is not documented in the help returned by
?correlation::cor_test:

rstatix::cor_test(adelie, bill_length_mm, body_mass_g,
alternative = "greater")

A tibble: 1 x 8
var1 var2 cor statistic p conf.low conf.high method
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
1 bill_length_mm body_mass_g 0.55 8.01 1.48e-13 0.447 1 Pearson

correlation::cor_test(adelie, x = "bill_length_mm", y = "body_mass_g",
alternative = "greater")

Parameter1 | Parameter2 | r | 95% CI | t(149) | p | Method | n_Obs
--
bill_length_mm | body_mass_g | 0.55 | [0.45, 1.00] | 8.01 | < .001 | Pearson | 151

2

https://dataenthusiast.ca/2021/correlation-analysis-in-r-part-1-basic-theory/#correlation_coefficient
https://dataenthusiast.ca/2021/correlation-analysis-in-r-part-1-basic-theory/#directional-testing

Retrieving p-values and Confidence Intervals

Even if your analysis does not immediately return a p-value or a CI for your chosen method, correlation
package provides two functions that can calculate them for nearly any method in existence: cor_to_p()
and cor_to_ci(). These functions take:

• your correlation coefficient (or a correlation matrix),
• sample size,
• confidence level (95% set as default), and
• method (see ?correlation::cor_to_ci for a full list).

Let’s illustrate using the values returned by our analysis of correlation between bill length and body mass
in Adelie penguins, for Spearman’s 𝜌 coefficient:

p-value
correlation::cor_to_p(.55, n = 151, method = "spearman")

$p
[1] 2.581667e-13
##
$statistic
[1] 8.038661

CI with default confidence level
correlation::cor_to_ci(.55, n = 151, method = "spearman")

$CI_low
[1] 0.4239604
##
$CI_high
[1] 0.6551406

CI with 99% confidence level
correlation::cor_to_ci(.55, n = 151, ci = 0.99, method = "spearman")

$CI_low
[1] 0.3802826
##
$CI_high
[1] 0.683883

As of the time of writing this, cor_to_p() and cor_to_ci() do not support directional hypothesis testing.

Correlation Matrix

A correlation matrix is simply a table containing correlation coefficients for pairs of variables. It is useful
when you need to report coefficients (and sometimes their p-values too) for more than two variables. Here
is what it looks like:

3

clean up missing data
penguins <- drop_na(penguins)

make correlation matrix
cmat <- rstatix::cor_mat(penguins, names(select_if(penguins, is.numeric)))
cmat

A tibble: 5 x 6
rowname bill_length_mm bill_depth_mm flipper_length_mm body_mass_g year
* <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 bill_length_mm 1 -0.23 0.65 0.59 0.033
2 bill_depth_mm -0.23 1 -0.580 -0.47 -0.048
3 flipper_length_mm 0.65 -0.580 1 0.87 0.15
4 body_mass_g 0.59 -0.47 0.87 1 0.022
5 year 0.033 -0.048 0.15 0.022 1

You can reorder a correlation matrix by coefficient:

correlation matrix, ordered by coefficient
rstatix::cor_reorder(cmat)

A tibble: 5 x 6
rowname bill_depth_mm year bill_length_mm flipper_length_mm body_mass_g
* <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 bill_depth_mm 1 -0.048 -0.23 -0.580 -0.47
2 year -0.048 1 0.033 0.15 0.022
3 bill_length_mm -0.23 0.033 1 0.65 0.59
4 flipper_length_mm -0.580 0.15 0.65 1 0.87
5 body_mass_g -0.47 0.022 0.59 0.87 1

It is also possible to extract significance levels from the correlation matrix with rstatix::cor_get_pval(),
which returns a table of numeric p-values:

matrix of p-values
rstatix::cor_get_pval(cmat)

A tibble: 5 x 6
rowname bill_length_mm bill_depth_mm flipper_length_mm body_mass_g year
<chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 bill_length_mm 0. 2.53e- 5 7.21e- 42 1.54e- 32 0.553
2 bill_depth_mm 2.53e- 5 0. 4.78e- 31 7.02e- 20 0.381
3 flipper_length_mm 7.21e-42 4.78e-31 0. 3.13e-105 0.00574
4 body_mass_g 1.54e-32 7.02e-20 3.13e-105 0. 0.691
5 year 5.53e- 1 3.81e- 1 5.74e- 3 6.91e- 1 0

You can also get a correlation matrix with both coefficients (as numbers) and p-values (as symbols). By
default, the symbols and their meanings are: **** ≤ .0001, *** ≤ .001, ** ≤ .01, * ≤ .05, no symbol
= not significant. You can assign your own symbols and significance cut-off points with the symbols and
cutpoints arguments, respectively.

4

rstatix::cor_mark_significant(cmat)

rowname bill_length_mm bill_depth_mm flipper_length_mm body_mass_g year
1 bill_length_mm
2 bill_depth_mm -0.23****
3 flipper_length_mm 0.65**** -0.58****
4 body_mass_g 0.59**** -0.47**** 0.87****
5 year 0.033 -0.048 0.15** 0.022

If you don’t like the matrix format, you can pivot the matrix to a long format with rstatix::cor_gather()
as a dataframe of paired variables. The returned table will show both the coefficients and the p-values as
numbers. Note that the table might get quite long depending on the number of correlated variables:

rstatix::cor_gather(cmat)

A tibble: 25 x 4
var1 var2 cor p
<chr> <chr> <dbl> <dbl>
1 bill_length_mm bill_length_mm 1 0.
2 bill_depth_mm bill_length_mm -0.23 2.53e- 5
3 flipper_length_mm bill_length_mm 0.65 7.21e-42
4 body_mass_g bill_length_mm 0.59 1.54e-32
5 year bill_length_mm 0.033 5.53e- 1
6 bill_length_mm bill_depth_mm -0.23 2.53e- 5
7 bill_depth_mm bill_depth_mm 1 0.
8 flipper_length_mm bill_depth_mm -0.580 4.78e-31
9 body_mass_g bill_depth_mm -0.47 7.02e-20
10 year bill_depth_mm -0.048 3.81e- 1
... with 15 more rows

An opposite function rstatix::cor_spread() spreads a long correlation dataframe into a correlation matrix:

cmat_long <- cor_gather(cmat)
rstatix::cor_spread(cmat_long)

A tibble: 5 x 6
rowname bill_length_mm bill_depth_mm flipper_length_mm body_mass_g year
<chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 bill_length_mm 1 -0.23 0.65 0.59 0.033
2 bill_depth_mm -0.23 1 -0.580 -0.47 -0.048
3 flipper_length_mm 0.65 -0.580 1 0.87 0.15
4 body_mass_g 0.59 -0.47 0.87 1 0.022
5 year 0.033 -0.048 0.15 0.022 1

Reporting Correlation Analysis

Reporting as Text

Reporting correlation coefficients is pretty easy: you just have to say how big they are and what their
significance value is. When reporting, keep the following things in mind (Field, Miles, and Field 2012, 241):

5

1. Coefficients are usually (for example, in APA style) reported to two decimal places. There should be
no zero before the decimal point for the correlation coefficient or the probability value (because neither
can exceed 1).

2. There are standard probabilities you can use when reporting 𝑝 (.05, .01, .001, and .0001). If 𝑝 ≥ .001,
report the exact p-value, otherwise you can simply report 𝑝 < .001.

3. If you are reporting a one-tailed probability, you should expressly state so, as by default probabilities
are assumed to be two-tailed.

4. Use a correct letter to represent your correlation coefficient, such as Pearson’s 𝑟, Kendall’s 𝜏 , or
Spearman’s 𝜌.

5. Remember to report your sample size (as 𝑛 = 𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒) or degrees of freedom (APA requires
degrees of freedom in parentheses next to 𝑟). Just remember that for Pearson’s 𝑟, 𝑑𝑓 = 𝑛 – 2. For
non-parametric tests, report only sample size.

6. It is also recommended to report the test statistic (for Pearson’s 𝑟, it would be 𝑡-statistic).
7. Confidence intervals should be provided whenever possible in addition to the results of the hypothesis

test, with confidence level matched to the significance level chosen for the test (e.g. 95% CI for 𝑝 ≤ .05,
99% CI for 𝑝 ≤ .01); if no inference to the population is intended, report standard deviation of the
mean instead of CI (Sim and Reid 1999) .

For example, the results of this test:

correlation::cor_test(adelie, x = "bill_length_mm", y = "body_mass_g")

Parameter1 | Parameter2 | r | 95% CI | t(149) | p | Method | n_Obs
--
bill_length_mm | body_mass_g | 0.55 | [0.43, 0.65] | 8.01 | < .001 | Pearson | 151

Can be reported as follows:

Our research shows a highly significant positive correlation between bill length and body mass
among Adelie penguins: 𝑡 = 8.01, 𝑝 < .001, Pearson’s 𝑟(149) = .55, 𝑛 = 151, 95% CI [0.43, 0.65].

Reporting Spearman’s or Kendall’s correlation coefficients would be similar, but without degrees of freedom.1

Reporting as Table

You have no doubt noticed that the results of statistical models are often reported as nicely formatted tables
in peer-reviewed journals. So far, our correlations have been reported as plain text tables with a monospaced
font. Which means they look a bit ugly. Fortunately, R has a multitude of packages designed to format
tables. You can find a brief overview of most (although certainly not all) of them here.

My criteria for choosing the best packages to format tables are simple. First and foremost, the package should
be fully compatible with R Markdown, which I use for nearly all my writing (and you should too, because of
how much better it is than MS Word legacy software with horrible UI).2 This means that when you knit your
Rmd, the table should render correctly in at least the following formats: HTML, PDF, Word, PowerPoint,
and ideally, also OpenDocument and LaTeX. The package should also be easy to use and well-documented.

Upon some research, I think that the best options are:
1Also note that the magnitude of Spearman’s correlation is usually very close to Pearson’s, but Kendall’s is not. For small

samples, Kendall’s 𝜏 gives a more accurate estimate of the correlation in the population, particularly when your ranked data
(ranked because it is a non-parametric test) has a lot of tied ranks (Field, Miles, and Field 2012, 225). More on this later in
the series.

2For example, all posts in my blog are written in R Markdown and deployed to WordPress directly from R using the
goodpress package. Changing a single setting in the post’s YAML header (which takes a few seconds) can turn it into a nicely
formatted HTML page, PDF article, MS Word or LibreOffice document, etc.

6

https://www.socscistatistics.com/tutorials/correlation/default.aspx
https://hughjonesd.github.io/huxtable/design-principles.html
https://rmarkdown.rstudio.com/
https://dataenthusiast.ca/category/correlation-analysis/
https://maelle.github.io/goodpress/

• huxtable – supports most formats and is well-documented,
• flextable – the best documented, and
• gtsummary – the simplest. Although gtsummary renders natively as HTML only, its output can be

converted to huxtable or flextable objects, which in turn can be rendered as pretty much anything.
Also, huxtable and flextable are highly versatile and can be used to format any tables, regardless
of their contents. gtsummary is primarily intended to format the output of commonly used statistical
models.

I personally prefer huxtable because it supports the largest number of formats (for some to work, you may
still need flextable to be installed) and has a simple, straightforward syntax.

install packages for table formatting
install.packages("huxtable")
install.packages("flextable")

Avoid loading huxtable and flextable at the same time, as there will be conflicts between some of their
functions. Or if you have to, call functions using the packagename:: syntax.

Let’s now demonstrate huxtable in action by formatting the results of our correlation analysis:

load huxtable
library(huxtable)

make huxtable
adelie_ht <- rstatix::cor_test(adelie,

bill_length_mm, body_mass_g,
method = "spearman") %>%

as_huxtable() %>%
set_all_padding(row = everywhere, col = everywhere, value = 6) %>%
set_bold(1, everywhere) %>%
set_top_border(1, everywhere, value = 0.8) %>%
set_bottom_border(1, everywhere, value = 0.4) %>%
set_caption("Correlation between Body Mass and Bill Length in Adelie Penguins")

render huxtable
adelie_ht

Table 1: Correlation between Body Mass and Bill Length in Adelie Penguins

var1 var2 cor statistic p method

bill_length_mm body_mass_g 0.55 2.59e+05 2.77e-13 Spearman

In some situations, you might need to render a huxtable object as an image, e.g. to combine it with a
ggplot object or for other purposes. For example, I had to do this for compatibility with the goodpress
package, which for some reason can’t process huxtable HTML output. To render your huxtable as an image,
you’ll first need to convert it to a flextable object with huxtable::as_flextable(), and then render with
flextable::as_raster().3

3You’ll also need to have packages webshot and magick installed, along with their system dependencies.

7

https://hughjonesd.github.io/huxtable/
https://hughjonesd.github.io/huxtable/huxtable.html
https://davidgohel.github.io/flextable/
https://ardata-fr.github.io/flextable-book/index.html
http://www.danieldsjoberg.com/gtsummary/index.html
https://hughjonesd.github.io/huxtable/huxtable.html#using-huxtables-in-knitr-and-rmarkdown
https://maelle.github.io/goodpress/
https://github.com/wch/webshot
https://github.com/ropensci/magick

render huxtable as an image
adelie_ht %>%

as_flextable() %>%
flextable::as_raster(.)

Refer to the huxtable documentation for the details about what these functions do. Note that some table
formatting options work only for the specific output types. For example, higher visual weight of the top
border (value = 0.8) renders correctly in PDF, but in HTML both borders render as having equal weight.
Not sure if this is a bug or a feature.
As a more advanced example, let’s format our correlation matrix cmat. First, let’s reorder it by correlation
coefficient, and then let’s render coefficients in different color fonts depending on the coefficient’s sign and
magnitude:

cmat_ht <- rstatix::cor_reorder(cmat) %>%
as_huxtable() %>%
set_all_padding(row = everywhere, col = everywhere, value = 6) %>%
set_bold(1, everywhere) %>%
set_background_color(evens, everywhere, "grey92") %>%
map_text_color(-1, -1, by_colorspace("red4", "darkgreen")) %>%
set_caption("Correlation Matrix for Pygoscelis Penguins") %>%
set_col_width(everywhere, value = c(.16, .15, .11, .2, .2, .2)) %>%
set_width(1.02) %>% # note how sum of col widths == total table width
theme_article() # yes, there are themes!

cmat_ht

Table 2: Correlation Matrix for Pygoscelis Penguins

rowname bill_depth_mm year bill_length_mm flipper_length_mm body_mass_g

bill_depth_mm 1 -0.048 -0.23 -0.58 -0.47

year -0.048 1 0.033 0.15 0.022

bill_length_mm -0.23 0.033 1 0.65 0.59

flipper_length_mm -0.58 0.15 0.65 1 0.87

body_mass_g -0.47 0.022 0.59 0.87 1

In case you are using R Markdown for your reporting and are rendering to PDF, keep in mind that you won’t
be able to format table captions with HTML tags like here: set_caption("Correlation Matrix for
Pygoscelis Penguins"), because they will be rendered literally (as “” and “”). However,
this works for HTML.
Also keep in mind that the best YAML settings for PDF output would be:

output:
pdf_document:
latex_engine: xelatex

This will work well for complex or unusual LaTeX syntax, which may otherwise cause “Unicode character …
not set up for use with LaTeX when knitting to pdf” error.

8

https://hughjonesd.github.io/huxtable/reference/index.html

Just to illustrate how PDF output would look, here is this post rendered to PDF from R Markdown. Looks
nice, doesn’t it?

Visualizing Correlation Matrix

rstatix has a function to visualize correlation matrices: cor_plot(). However, rstatix::cor_plot() does
not return a ggplot object, and thus:

• can’t take ggplot2 themes or custom theme objects,
• makes it harder to define a custom color palette, and
• most importantly, rstatix::cor_plot() output can’t be further customized or annotated using

ggplot2 themes or packages such as ggpubr.4

Therefore, I would instead recommend using ggcorrplot::ggcorrplot() which returns a ggplot object that
can be altered, customized, or annotated using a broad ecosystem of ggplot2-based packages. Another great
package is latex2exp. It allows you to render LaTeX expressions inside plot objects, which is very handy if
you’d like to use special symbols or Greek letters in your plot’s text elements.

install ggcorrplot and ggpubr
install.packages("ggcorrplot")
install.packages("ggpubr")
install.packages("latex2exp")

load ggcorrplot and ggpubr
library(ggcorrplot)
library(ggpubr)

There are two main ways to visualize a correlation matrix: as a square plot where correlations are duplicated
(remember that 𝐶𝑂𝑅𝑥𝑦 = 𝐶𝑂𝑅𝑦𝑥) and self-correlations (𝑟 = 1) are included, and as a half-square plot where
correlation coefficients are not duplicated and self-correlations are excluded. Optionally, you can also add
correlation coefficients to the plot, mark statistically non-significant correlations or completely exclude them,
change the plot’s color scheme, etc. Since ggcorrplot() returns a ggplot2 object, it can be further altered
(e.g. by adding subtitle, annotations, captions, etc.) using ggpubr::ggpar(), ggpubr::annotate_figure(),
and similar functions.

ggcorrplot - basic
ggcorrplot(cmat, title = "Penguins Correlated")

4If you try, it will return “Error in ggpubr…: Can’t handle an object of class matrix”.

9

https://dataenthusiast.ca/wp-content/uploads/2021/01/correlations-in-r-2-performing-and-reporting.pdf
https://rpkgs.datanovia.com/ggpubr/
https://cran.r-project.org/web/packages/latex2exp/vignettes/using-latex2exp.html

bill_length_mm

bill_depth_mm

flipper_length_mm

body_mass_g

year

bil
l_l

en
gt

h_
m

m

bil
l_d

ep
th

_m
m

flip
pe

r_
len

gt
h_

m
m

bo
dy

_m
as

s_
g

ye
ar

−1.0

−0.5

0.0

0.5

1.0
Corr

Penguins Correlated

Let’s now customize the plot by removing self-correlations, leaving non-significant coefficients blank, assigning
a different color palette, reordering the plot by correlation coefficient, choosing plot theme, and adding
subtitle and caption. Pay attention to comments in the code:

ggcorrplot - customized
ggcorrplot(cmat, # takes correlation matrix

title = "Penguins Correlated",
ggtheme = theme_classic, # takes ggplot2 and custom themes
colors = c("red", "white", "forestgreen"), # custom color palette
hc.order = TRUE, # reorders matrix by corr. coeff.
type = "upper", # prevents duplication; also try "lower"
lab = TRUE, # adds corr. coeffs. to the plot
insig = "blank", # wipes non-significant coeffs.
lab_size = 3.5) %>%

add subtitle and caption; note rendering LaTeX symbols in ggplot objects
ggpubr::ggpar(subtitle = latex2exp::TeX("Significant correlations only (p$\\leq$.05)",

output = "text"),
caption = "Data: Gorman, Williams, and Fraser 2014")

10

−0.23

−0.58 0.15 0.65

−0.47 0.59 0.87

year

bill_length_mm

flipper_length_mm

body_mass_g

bil
l_d

ep
th

_m
m

ye
ar

bil
l_l

en
gt

h_
m

m

flip
pe

r_
len

gt
h_

m
m

−1.0

−0.5

0.0

0.5

1.0
Corr

Significant correlations only (p ≤ . 05)

Penguins Correlated

Data: Gorman, Williams, and Fraser 2014

Note how you can render LaTeX symbols inside ggplot objects with latex2exp::TeX() function.

Hopefully, I’ve managed to provide some useful tips on performing and reporting correlation analysis. The
next post in this series will be dedicated to robust methods for correlation analysis.

This post is also available as a PDF.

Bibliography

Field, Andy, Jeremy Miles, and Zoë Field. 2012. Discovering Statistics Using R. First edit. London,
Thousand Oaks, New Delhi, Singapore: SAGE Publications.

Gorman, Kristen B., Tony D. Williams, and William R. Fraser. 2014. “Ecological sexual dimorphism and
environmental variability within a community of Antarctic penguins (Genus Pygoscelis).” PLoS ONE 9 (3).
https://doi.org/10.1371/journal.pone.0090081.

Sim, Julius, and Norma Reid. 1999. “Statistical inference by confidence intervals: Issues of interpretation
and utilization.” Physical Therapy 79 (2): 186–95. https://doi.org/10.1093/ptj/79.2.186.

11

https://dataenthusiast.ca/category/correlation-analysis/
https://dataenthusiast.ca/wp-content/uploads/2021/01/correlations-in-r-2-performing-and-reporting.pdf
https://doi.org/10.1371/journal.pone.0090081
https://doi.org/10.1093/ptj/79.2.186

	 Performing Correlation Analysis: Basic Tools
	 Comparing stats::cor.test, rstatix::cor_test, and correlation::cor_test
	 Retrieving p-values and Confidence Intervals
	 Correlation Matrix

	 Reporting Correlation Analysis
	 Reporting as Text
	 Reporting as Table
	 Visualizing Correlation Matrix

	 Bibliography

